ReadyPlanet.com
dot
dot
หมวดหมู่สินค้าหรือบริการของเว็บไซต์
dot
bulletเทอร์โมคัปเปิล Thermocouple
bulletRTD,PT100
bulletPT100
bulletPT1000
bulletสายเทอร์โมคัปเปิล
bulletTemperature Controller
bulletThermocouple Head Explosion Proof,XDA
bulletThermocouple Head Explosion Proof,XDS
bulletTEMPERATURE CONTROLLER
bulletINOR-Transmitter Thermocouple and RTD,PT100
bulletเทอร์โมคัปเปิล แบบหัวเกลียว M6 และ 1/2
bulletเทอร์โมคัปเปิล แบบหางปลากลม 5,6,7,8...mm
bulletเทอร์โมคัปเปิลมาตรฐาน ออกสาย
bulletเทอร์โมคัปเปิลมาตรฐาน ออกสาย+สปริง
bulletเทอร์โมคัปเปิลพร้อมเกลียวมาตรฐาน 2,3,4,6,8 หุน
bulletเทอร์โมคัปเปิลแบบเขี้ยวล็อค 1
bulletเทอร์โมคัปเปิลแบบเขี้ยวล็อค 2
bulletเทอร์โมคัปเปิลแบบหัวกะโหลกมาตรฐาน
bulletเทอร์โมคัปเปิลแบบหัวกะโหลกพร้อมเกลียวมาตรฐาน
bulletเทอร์โมคัปเปิลใช้อุณหภูมิ0-100องศา
bulletเทอร์โมคัปเปิลใช้อุณหภูมิ0-200องศา
bulletเทอร์โมคัปเปิลใช้อุณหภูมิ0-300องศา
bulletเทอร์โมคัปเปิลใช้อุณหภูมิ0-400องศา
bulletเทอร์โมคัปเปิลใช้อุณหภูมิ0-500องศา
bulletเทอร์โมคัปเปิลใช้อุณหภูมิ0-1000องศา
bulletเทอร์โมคัปเปิลใช้อุณหภูมิ0-1200องศา
bulletเทอร์โมคัปเปิล type K
bulletเทอร์โมคัปเปิล type J
bulletเทอร์โมคัปเปิล type T
bulletเทอร์โมคัปเปิล type E
bulletเทอร์โมคัปเปิล type B
bulletเทอร์โมคัปเปิล type R
bulletเทอร์โมคัปเปิล type S
bulletเทอร์โมคัปเปิล type N
bulletทฤษฎีเทอร์โมคัปเปิล จาก wiki
bulletThermocouple Type K
bulletThermocouple Type J
bulletThermocouple Type T
bulletThermocouple Type E
bulletThermocouple Type B
bulletThermocouple Type R
bulletThermocouple Type S
bulletThermocouple Type N
bulletPT100 Diameter1.5mm
bulletPT100 Diameter3mm
bulletPT100 Diameter3.2mm
bulletPT100 Diameter4mm
bulletPT100 Diameter5mm
bulletPT100 Diameter 6mm
bulletPT100 Diameter6.3mm
bulletPT100 Diameter 7mm
bulletPT100 Diameter 8mm
bulletPT100 Diameter9.5mm
bulletPT100 Diameter 10mm
bulletPT100 Diameter 10.2mm
bulletPT100 Diameter 12.7mm
bulletPT100 Diameter 15.8mm
bulletPT100 Diameter 17.5mm
bulletPT100 Diameter 19mm
bulletPT100 Diameter 22mm
bulletPT100 Diameter 25.4mm
bulletPT100 wire PVC
bulletPT100 wire TEFLON
bulletPT100 wire Silicone
bulletPT100 wire 1m
bulletPT100 wire 2m
bulletPT100 wire 3m
bulletPT100 wire 4m
bulletPT100 wire 5m
bulletPT100 wire 6m
bulletPT100 wire 7m
bulletPT100 wire 8m
bulletPT100 wire 9m
bulletPT100 wire 10m
bulletOther PT100
bullet3 Wire RTD Sensor
bullet4 Wire RTD
bulletTW-50
bulletTHERMOCOUPLE HEAD
bulletTHERMOMETER
bulletRM1006C
bulletPilz
dot
HEATER
dot
bulletฮีตเตอร์ , HEATER
bulletฮีตเตอร์รัดท่อ
bulletฮีตเตอร์จุ่ม
bulletฮีตเตอร์แท่ง
bulletฮีตเตอร์ครีบ
bulletฮีตเตอร์แผ่น
bulletฮีตเตอร์บ้อบบิน
bulletฮีตเตอร์อินฟราเรด
bulletอินฟราเรด ฮีตเตอร์
bulletHEATER INFRARED
bulletINFRARED HEATER
bulletปลอกสายทนความร้อน
bulletOMEGA Thermocouple


follow ผมได้นะครับ
THERMOCOUPLE
Temperature Controller
HEATER,ฮีตเตอร์
heater ฮีตเตอร์


ข้อมูลเทอร์โมคัปเปิล,ทฤษฎีเทอร์โมคัปเปิล

THERMOCOUPLE,เทอร์โมคัปเปิล

ข้อมูลเทอร์โมคัปเปิล,ทฤษฎีเทอร์โมคัปเปิล จาก wikipedia

A thermocouple or thermocouple thermometer is a junction between two different metals that produces a voltage related to a temperature difference. Thermocouples are a widely used type of temperature sensor for measurement and control[1] and can also be used to convert heat into electric power. They are inexpensive[2] and interchangeable, are supplied fitted with standard connectors, and can measure a wide range of temperatures. The main limitation is accuracy: system errors of less than one kelvin (K) can be difficult to achieve.[citation needed]

Any junction of dissimilar metals will produce an electric potential related to temperature. Thermocouples for practical measurement of temperature are junctions of specific alloys which have a predictable and repeatable relationship between temperature and voltage. Different alloys are used for different temperature ranges. Properties such as resistance to corrosion may also be important when choosing a type of thermocouple. Where the measurement point is far from the measuring instrument, the intermediate connection can be made by extension wires of the same metals, which are less costly than the materials used to make the sensor. Thermocouples are usually standardized against a reference temperature of 0 degrees Celsius; practical instruments use electronic methods of cold-junction compensation to adjust for varying temperature at the instrument terminals. Electronic instruments can also compensate for the varying characteristics of the thermocouple, and so improve the precision and accuracy of measurements.
Thermocouples are widely used in science and industry; applications include temperature measurement for kilns, gas turbine exhaust, diesel engines, and other industrial processes.

Voltage–temperature relationship
The nonlinear relationship between the temperature difference (ΔT) and the output voltage (mV) of a thermocouple can be
Polynomial Coefficients 0-500 °C[3] n  Type K
1  25.08355
2  7.860106x10-2
3  -2.503131x10-1
4  8.315270x10-2
5  -1.228034x10-2
6  9.804036x10-4
7  -4.413030x10-5
8  1.057734x10-6
9  -1.052755x10-8

Voltage–temperature relationship
The nonlinear relationship between the temperature difference (ΔT) and the output voltage (mV) of a thermocouple can be
Polynomial Coefficients 0-500 °C[3] n  Type K
1  25.08355
2  7.860106x10-2
3  -2.503131x10-1
4  8.315270x10-2
5  -1.228034x10-2
6  9.804036x10-4
7  -4.413030x10-5
8  1.057734x10-6
9  -1.052755x10-8
Voltage–temperature relationship
The nonlinear relationship between the temperature difference (ΔT) and the output voltage (mV) of a thermocouple can be
Polynomial Coefficients 0-500 °C[3] n  Type K
1  25.08355
2  7.860106x10-2
3  -2.503131x10-1
4  8.315270x10-2
5  -1.228034x10-2
6  9.804036x10-4
7  -4.413030x10-5
8  1.057734x10-6
9  -1.052755x10-8

Voltage–temperature relationship
The nonlinear relationship between the temperature difference (ΔT) and the output voltage (mV) of a thermocouple can be
Polynomial Coefficients 0-500 °C[3] n  Type K
1  25.08355
2  7.860106x10-2
3  -2.503131x10-1
4  8.315270x10-2
5  -1.228034x10-2
6  9.804036x10-4
7  -4.413030x10-5
8  1.057734x10-6
9  -1.052755x10-8

The coefficients an are given for n from 0 to between 5 and 13 depending upon the metals. In some cases better accuracy is obtained with additional non-polynomial terms[3]. A database of voltage as a function of temperature, and coefficients for computation of temperature from voltage and vice-versa for many types of thermocouple is available online[3].
[edit] Equipment

In modern equipment the equation is usually implemented in a digital controller or stored in a look-up table;[4] older devices use analog circuits.

Thermocouples measure the temperature difference between two points, not absolute temperature. To measure a single temperature one of the junctions—normally the cold junction—is maintained at a known reference temperature, and the other junction is at the temperature to be sensed.

Having a junction of known temperature, while useful for laboratory calibration, is not convenient for most measurement and control applications. Instead, they incorporate an artificial cold junction using a thermally sensitive device such as a thermistor or diode to measure the temperature of the input connections at the instrument, with special care being taken to minimize any temperature gradient between terminals. Hence, the voltage from a known cold junction can be simulated, and the appropriate correction applied. This is known as cold junction compensation.

Alternatively cold junction compensation can be performed by computation using look-up tables[4] and polynomial interpolation.

A thermocouple can produce current, which means it can be used to drive some processes directly, without the need for extra circuitry and power sources. For example, the power from a thermocouple can activate a valve when a temperature difference arises. The electrical energy generated by a thermocouple is converted from the heat energy which must be supplied to the hot side to maintain the electric potential. A continuous flow of heat is necessary because the current flowing through the thermocouple tends to cause the hot side to cool down and the cold side to heat up (the Peltier effect).

Thermocouples can be connected in series to form a thermopile, where all the hot junctions are exposed to a higher and all the cold junctions to a lower temperature. The output is the sum of the voltages across the individual junctions, giving larger voltage and power output. Using the radioactive decay of transuranic elements as a heat source, this arrangement has been used to power spacecraft on missions too far from the Sun to utilize solar power.
[edit] Grades

Thermocouple wire is available in several different metallurgical formulations per type, typically, in decreasing levels of accuracy and cost: special limits of error, standard, and extension grades.
[edit] Extension wire

Extension grade wires made of the same metals as a higher-grade thermocouple are used to connect it to a measuring instrument some distance away without introducing additional junctions between dissimilar materials which would generate unwanted voltages; the connections to the extension wires, being of like metals, do not generate a voltage. The extension wire is specified to have a very similar thermal coefficient of EMF to the thermocouple, but only over a narrow range of temperatures which usually includes normal room temperature; this reduces the cost significantly. The temperature-measuring instrument must be have high input impedance to prevent any significant current draw from the thermocouple, to prevent a resistive voltage drop across the wire.

Changes in metallurgy along the length of the thermocouple (such as termination strips or changes in thermocouple type wire) will introduce another thermocouple junction which affects measurement accuracy. Also, in the United States, industry standards are that the thermocouple color code is used for the insulation of the positive lead, and red is the negative lead. it is used to mainly measure the temperature ranges from 500 degree Celsius to above 1000 degree Celsius mmk.

Types

Certain combinations of alloys have become popular as industry standards, driven by cost, availability, convenience, melting point, chemical properties, stability, and output. Different types are best suited for different applications. They are usually selected based on the temperature range and sensitivity needed. Thermocouples with low sensitivities (B, R, and S types) have correspondingly lower resolutions. Other selection criteria include the inertness of the thermocouple material, and whether it is magnetic or not. Standard thermocouple types are listed below with the positive electrode first, followed by the negative electrode.

K
K type thermocouple.
S (above, partially sheathed with an alundum tube) and K type thermocouples

Type K (chromel–alumel) is the most common general purpose thermocouple with a sensitivity of approximately 41 µV/°C, chromel positive relative to alumel.[5] It is inexpensive, and a wide variety of probes are available in its −200 °C to +1350 °C range. Type K was specified at a time when metallurgy was less advanced than it is today, and consequently characteristics vary considerably between samples. One of the constituent metals, nickel, is magnetic; a characteristic of thermocouples made with magnetic material is that they undergo a step change in output when the magnetic material reaches its Curie point (around 354 °C for type K thermocouples).

E

Type E (chromel–constantan)[4] has a high output (68 µV/°C) which makes it well suited to cryogenic use. Additionally, it is non-magnetic.
[edit] J

Type J (iron–constantan) has a more restricted range than type K (−40 to +750 °C), but higher sensitivity of about 55 µV/°C.[2] The Curie point of the iron (770 °C) causes an abrupt change in the characteristic, which determines the upper temperature limit.
[edit] N

Type N (Nicrosil–Nisil) (Nickel-Chromium-Silicon/Nickel-Silicon) thermocouples are suitable for use at high temperatures, exceeding 1200 °C, due to their stability and ability to resist high temperature oxidation. Sensitivity is about 39 µV/°C at 900 °C, slightly lower than type K. Designed to be an improved type K, it is becoming more popular.
[edit] Platinum types B, R, and S

Types B, R, and S thermocouples use platinum or a platinum–rhodium alloy for each conductor. These are among the most stable thermocouples, but have lower sensitivity than other types, approximately 10 µV/°C. Type B, R, and S thermocouples are usually used only for high temperature measurements due to their high cost and low sensitivity.

B

Type B thermocouples use a platinum–rhodium alloy for each conductor. One conductor contains 30% rhodium while the other conductor contains 6% rhodium. These thermocouples are suited for use at up to 1800 °C. Type B thermocouples produce the same output at 0 °C and 42 °C, limiting their use below about 50 °C.

R

Type R thermocouples use a platinum–rhodium alloy containing 13% rhodium for one conductor and pure platinum for the other conductor. Type R thermocouples are used up to 1600 °C.

S

Type S thermocouples are constructed using one wire of 90% Platinum and 10% Rhodium (the positive or "+" wire) and a second wire of 100% platinum (the negative or "-" wire). Like type R, type S thermocouples are used up to 1600 °C. In particular, type S is used as the standard of calibration for the melting point of gold (1064.43 °C).
[edit] T

Type T (copper–constantan) thermocouples are suited for measurements in the −200 to 350 °C range. Often used as a differential measurement since only copper wire touches the probes. Since both conductors are non-magnetic, there is no Curie point and thus no abrupt change in characteristics. Type T thermocouples have a sensitivity of about 43 µV/°C.
[edit] C

Type C (tungsten 5% rhenium – tungsten 26% rhenium) thermocouples are suited for measurements in the 0 °C to 2320 °C range. This thermocouple is well-suited for vacuum furnaces at extremely high temperatures. It must never be used in the presence of oxygen at temperatures above 260 °C.
[edit] M

Type M thermocouples use a nickel alloy for each wire. The positive wire contains 18% molybdenum while the negative wire contains 0.8% cobalt. These thermocouples are used in vacuum furnaces for the same reasons as with type C. Upper temperature is limited to 1400 °C. It is less commonly used than other types.
[edit] Chromel-gold/iron

In chromel-gold/iron thermocouples, the positive wire is chromel and the negative wire is gold with a small fraction (0.03–0.15 atom percent) of iron. It can be used for cryogenic applications (1.2–300 K and even up to 600 K). Both the sensitivity and the temperature range depends on the iron concentration. The sensitivity is typically around 15 µV/K at low temperatures and the lowest usable temperature varies between 1.2 and 4.2 K.
[edit] Laws for thermocouples
[edit] Law of homogeneous material

A thermoelectric current cannot be sustained in a circuit of a single homogeneous material by the application of heat alone, regardless of how it might vary in cross section. In other words, temperature changes in the wiring between the input and output do not affect the output voltage, provided all wires are made of the same materials as the thermocouple.
[edit] Law of intermediate materials

The algebraic sum of the thermoelectric forces in a circuit composed of any number of dissimilar materials is zero if all of the junctions are at a uniform temperature. So If a third metal is inserted in either wire and if the two new junctions are at the same temperature, there will be no net voltage generated by the new metal.
[edit] Law of successive or intermediate temperatures

If two dissimilar homogeneous materials produce thermal emf1 when the junctions are at T1 and T2 and produce thermal emf2 when the junctions are at T2 and T3 , the emf generated when the junctions are at T1 and T3 will be emf1 + emf2 .
[edit] Aging of thermocouples

Thermoelements are often used at high temperatures and in reactive furnace atmospheres. In this case the practical lifetime is determined by aging. The thermoelectric coefficients of the wires in the area of high temperature change with time and the measurement voltage drops. The simple relationship between the temperature difference of the joints and the measurement voltage is only correct if each wire is homogeneous. With an aged thermocouple this is not the case. Relevant for the generation of the measurement voltage are the properties of the metals at a temperature gradient. If an aged thermocouple is pulled partly out off the furnace, the aged parts from the region previously at high temperature enter the area of temperature gradient and the measurement error is significantly increased. An aged thermocouple that is pushed deeper into the furnace gives accurate readings, however.

ที่มา : http://en.wikipedia.org/wiki/Thermocouple





thermocouple TS9
thermocouple TS8
thermocouple TS7
thermocouple TS3
thermocouple TS1
thermocouple TS1
thermocouple TS5
thermocouple TS4
thermocouple TS2
HANYOUNG NUX
KOYO TRD-S Series
KOYO TRD-MX Series
KOYO TRD-2E Series
KOYO TRD-SH Series
KOYO TRD-NH Series
KOYO TRD-GK Series
KOYO THAILAND
KOYO TRD-N Series
KOYO TRD-J Series
KOYO IES ELECTRIC CO.,LTD
KOYO ENCREMENT ENCODER
KOYO ROTARY ENCODER
KOYO
MOTOR GEAR
LINKING TECH
THERMOMETER
Programmable Logic Controller Kubler
โปรแกรมเมเบิ้ลลอจิกคอนโทรลเลอร์
Electromechanical Pulse Counter KOYO
เครื่องนับจำนวนรอบแบบใช้ไฟฟ้าสั่งให้นับ
เครื่องนับจำนวนรอบโดยการนำไปจี้ที่แกนเพลา
เครื่องวัดความยาวเป็นเมตรหรือหลา
เครื่องนับจำนวนรอบ มีเอาต์พุตไมโครสวิทซ์ เพื่องานควบคุมจำนวนรอบอัตโนมัติ
Revolution Counter
เครื่องนับจำนวนรอบแบบแมคคานิค
Ratchet Counter
เครื่องนับจำนวนแบบก้านโยก
Hand Tally Counter
เครื่องนับจำนวนแบบใช้นิ้วกด
Mechanical Counters
เครื่องวัดความยาวแบบแมคคานิค
เครื่องนับจำนวน
Quartz Precision Long Term Thermo-Hygrogaph KORI
เครื่องบันทึกอุณหภูมิ, ความชื้นและความกดอากาศ
เครื่องบันทึกอุณหภูมิและความชื้น
Ceramic Fiber ISUZU
ฉนวนกันความร้อนเซรามิคไฟเบอร์
Tachometer Isolite Ceramic Fiber
เครื่องวัดความเร็วรอบ
Counter and Timer
เครื่องนับจำนวนและไทเมอร์
Digital Timer
ไทเมอร์แบบมัลติฟังก์ชั่นและจอแบบตัวเลข
Timer
ไทเมอร์
Rotary Encoder
เอ็นโคดเดอร์แบบล้อหมุน
Inductive Proximity Switch
พร็อกซิมิตี้สวิทซ์สำหรับตรวจจับโลหะ
Thyristor Power Regulator
อุปกรณ์ควบคุมฮีตเตอร์
ON-OFF Refrigerator Controller
เครื่องวัดและควบคุมอุณหภูมิแบบ ON-OFF
PID Temperature Controller
เครื่องวัดและควบคุมอุณหภูมิแบบ PID
Digital Temperature Indicator
เครื่องวัดอุณหภูมิแบบดิจิตอล
HANYOUNG
Power Supplly, Milli-Ohm Meter
แหล่งจ่ายไฟ DC, มิลลิโอห์มมิเตอร์
Ellectrical Satety Tester
Ellectrical Satety Function Generator, AC/DC/IR
ฟังก์ชันเจนเนอร์เรเตอร์, เครื่องทดสอบ AC/DC/IR
LCR Digital Strorage Osilloscope, Hegh Precision LCR Meter
ดิจิตอลสตอเรจออสซิลโลส์โคป, มิเตอร์วัดค่า
GW instek
ON-OFF Refrigerator Controller
เครื่องวัดและควบคุมอุณหภูมิแบบ ON-OFF
FOX
ดิจิตอลมัลติมิเตอร์ มีอะนาลอกบาร์กราฟ
ดิจิตอลแคลมป์มิเตอร์ (AC)
ดิจิตอลแคลมป์มิเตอร์ (AC/DC)
FLUKE
PID Temperature Controller
เครื่องวัดและควบคุมอุณหภูมิแบบ PID
Universal Head Temperatue Transmitter Fenwal
ตัวแปลงอุณหภูมิเป็นสัญญาณไฟฟ้าแบบติดตั้งในหัวกะโหลก
Accessory for Heater FW SYSTEM
อุปกรณ์ใช้งานร่วมกับฮีตเตอร์
Infrared Heater
ฮีตเตอร์อินฟราเรด
Strip Heater
ฮีตเตอร์แผ่น
Band Heater
ฮีตเตอร์รัดท่อ
Bobbin Heater
ฮีตเตอร์บอบบิ้น สำหรับของเหลว
Innersion Heater
ฮีตเตอร์จุ่ม สำหรับของเหลว



Copyright © 2010 All Rights Reserved.

 

เลขทะเบียนพาณิชย์อิเล็กทรอนิกส์ เลขที่ 0135549007974 IES ELECTRIC CO.,LTD. 56/242 moo5 ,Lardsawai,Lum Luk Ka,Patumthani.12150 บริษัท ไออีเอส อิเล็คทริค จำกัด 56/242 หมู่5 ต.ลาดสวาย อ.ลำลูกกา จ.ปทุมธานี 12150 TEL:(02)-1011230-2 FAX:(02)-1011233 Mobile : (086) 3114992 e-mail: ies-thailand@hotmail.com
ดู TEMPERATURE CONTROLLER,LINKING,เครื่องควบคุมอุณหภูมิ ในแผนที่ขนาดใหญ่กว่า