แพลตตินัมเป็นโลหะที่ดีที่สุดสำหรับ RTD เนื่องจากเป็นไปตามความต้านทานเชิงเส้นตรงต่อความสัมพันธ์ของอุณหภูมิ และเป็นไปตามความสัมพันธ์ R กับ T ในลักษณะที่สามารถทำซ้ำได้สูงในช่วงอุณหภูมิที่กว้าง คุณสมบัติเฉพาะของแพลตตินัมทำให้เป็นวัสดุที่เลือกใช้สำหรับมาตรฐานอุณหภูมิในช่วง -272.5 °C ถึง 961.78 °C และใช้ในเซ็นเซอร์ที่กำหนดมาตรฐานอุณหภูมิสากล ITS-90 มันถูกสร้างขึ้นโดยใช้แพลตตินัมเนื่องจากความสัมพันธ์ระหว่างความต้านทานต่ออุณหภูมิเชิงเส้นและความเฉื่อยทางเคมี
ตัวสร้างความแตกต่างพื้นฐานระหว่างโลหะที่ใช้เป็นองค์ประกอบต้านทานคือการประมาณเชิงเส้นของความสัมพันธ์ R กับ T ระหว่าง 0 ถึง 100 °C และเรียกว่าอัลฟา, α สมการด้านล่างให้นิยาม α โดยมีหน่วยเป็น โอห์ม/โอห์ม/°C
ค่าอัลฟ่าที่แตกต่างกันสำหรับแพลตตินัมสามารถทำได้โดยการเติม โดยพื้นฐานแล้วจะมีการแนะนำสิ่งเจือปนเข้าสู่แพลตตินัมอย่างระมัดระวัง สิ่งเจือปนที่เกิดขึ้นในระหว่างการเติมจะฝังอยู่ในโครงสร้างขัดแตะของแพลตตินัมและส่งผลให้เกิดเส้นโค้ง R กับ T ที่แตกต่างกันและด้วยเหตุนี้ค่าอัลฟ่า
การสอบเทียบ
เพื่อระบุลักษณะความสัมพันธ์ระหว่าง R กับ T ของ RTD ในช่วงอุณหภูมิที่แสดงถึงช่วงการใช้งานที่วางแผนไว้ ต้องทำการสอบเทียบที่อุณหภูมิอื่นที่ไม่ใช่ 0°C และ 100°C วิธีการสอบเทียบทั่วไปสองวิธีคือวิธีจุดคงที่และวิธีการเปรียบเทียบ
There are three main categories of RTD sensors; Thin Film, Wire-Wound, and Coiled Elements. While these types are the ones most widely used in industry there are some places where other more exotic shapes are used, for example carbon resistors are used at ultra low temperatures (-173 °C to -273 °C).
Carbon resistors Elements are widely available and are very inexpensive. They have very reproducible results at low temperatures. They are the most reliable form at extremely low temperatures. They generally do not suffer from significant hysteresis or strain gauge effects.
Strain Free Elements a wire coil minimally supported within a sealed housing filled with an inert gas. These sensors are used up to 961.78 °C and are used in the SPRT’s that define ITS-90. They consisted of platinum wire loosely coiled over a support structure so the element is free to expand and contract with temperature, but it is very susceptible to shock and vibration as the loops of platinum can sway back and forth causing deformation.
Thin Film Elements have a sensing element that is formed by depositing a very thin layer of resistive material, normal platinum, on a ceramic substrate; This layer is usually just 10 to 100 angstroms (1 to 10 nanometers) thick.[7] This film is then coated with an epoxy or glass that helps protect the deposited film and also acts as a strain relief for the external lead-wires. Disadvantages of this type are that they are not as stable as their wire wound or coiled counterparts. They also can only be used over a limited temperature range due to the different expansion rates of the substrate and resistive deposited giving a "strain gauge" effect that can be seen in the resistive temperature coefficient. These elements work with temperatures to 300 °C.
Wire-wound Elements can have greater accuracy, especially for wide temperature ranges. The coil diameter provides a compromise between mechanical stability and allowing expansion of the wire to minimize strain and consequential drift. The sensing wire is wrapped around an insulating mandrel or core. The winding core can be round or flat, but must be an electrical insulator. The coefficient of thermal expansion of the winding core material is matched to the sensing wire to minimize any mechanical strain. This strain on the element wire will result in a thermal measurement error. The sensing wire is connected to a larger wire, usually referred to as the element lead or wire. This wire is selected to be compatible with the sensing wire so that the combination does not generate an emf that would distort the thermal measurement. These elements work with temperatures to 660 °C.
Coiled elements have largely replaced wire-wound elements in industry. This design has a wire coil which can expand freely over temperature, held in place by some mechanical support which lets the coil keep its shape. This “strain free” design allows the sensing wire to expand and contract free of influence from other materials; in this respect it is similar to the SPRT, the primary standard upon which ITS-90 is based, while providing the durability necessary for industrial use. The basis of the sensing element is a small coil of platinum sensing wire. This coil resembles a filament in an incandescent light bulb. The housing or mandrel is a hard fired ceramic oxide tube with equally spaced bores that run transverse to the axes. The coil is inserted in the bores of the mandrel and then packed with a very finely ground ceramic powder. This permits the sensing wire to move while still remaining in good thermal contact with the process. These Elements works with temperatures to 850 °C.
The current international standard which specifies tolerance, and the temperature-to-electrical resistance relationship for platinum resistance thermometers is IEC 60751:2008, ASTM E1137 is also used in the United States. By far the most common devices used in industry have a nominal resistance of 100 ohms at 0 °C, and are called Pt100 sensors ('Pt' is the symbol for platinum). The sensitivity of a standard 100 ohm sensor is a nominal 0.00385 ohm/°C. RTDs with a sensitivity of 0.00375 and 0.00392 ohm/°C as well as a variety of others are also available.
As they are almost invariably made of platinum, they are often called platinum resistance thermometers (PRTs). They are slowly replacing the use of thermocouples in many industrial applications below 600 °C, due to higher accuracy and repeatability.Common RTD sensing elements constructed of platinum copper or nickel have a unique, and repeatable and predictable resistance versus temperature relationship (R vs T) and operating temperature range. The R vs T relationship is defined as the amount of resistance change of the sensor per degree of temperature change.
Wiring configurations
Two-wire configuration
The simplest resistance thermometer configuration uses two wires. It is only used when high accuracy is not required, as the resistance of the connecting wires is added to that of the sensor, leading to errors of measurement. This configuration allows use of 100 meters of cable. This applies equally to balanced bridge and fixed bridge system.
Three-wire configuration
In order to minimize the effects of the lead resistances, a three-wire configuration can be used. Using this method the two leads to the sensor are on adjoining arms. There is a lead resistance in each arm of the bridge so that the resistance is cancelled out, so long as the two lead resistances are accurately the same. This configuration allows up to 600 meters of cable.
Error on the schematic : A three wire RTD is connected in the following manner. One lead is connected to R1. That wire's lead resistance is measured as a part of the RTD resistance. One wire (of the two on the other end of the RTD) is connected to the lower end of R3. This wire's lead resistance is measured with R3, the reference resistor. One wire (of the two on the other end of the RTD) is connected to the supply return. (ground) This resistance is normally considered too low to matter in the measurement and is in series with the currents through the RTD and the reference resistor (R3) The lead resistance effects are all translated into common mode voltages that are rejected (common mode rejection) by the instrumentation amplifier. The wires are typically the same gauge and made of the same wire, to minimise temperature coefficient issues.
Four-wire configuration
The four-wire resistance thermometer configuration increases the accuracy and reliability of the resistance being measured: the resistance error due to lead wire resistance is zero. In the diagram above a standard two-terminal RTD is used with another pair of wires to form an additional loop that cancels out the lead resistance. The above Wheatstone bridge method uses a little more copper wire and is not a perfect solution. Below is a better configuration, four-wireKelvin connection. It provides full cancellation of spurious effects; cable resistance of up to 15 Ω can be handled.